CONTENT
MASTER MECHANICAL ENGINEERING

- What is Mechanical Engineering
- ME master program at UT
 - Competences (Tracks)
 - Specialisations
- Overview of specialisations
- Admission
 - HBO WB
 - BSc UT
- Information on specialisations (market NH 124)
WHAT IS MECHANICAL ENGINEERING?
WHAT IS MECHANICAL ENGINEERING?
A BROAD DISCIPLINE

Large structures
Aeropace
3D Printing
Maintenance
Consumer products
WHAT IS MECHANICAL ENGINEERING?
A BROAD DISCIPLINE

Composite structures
(Sustainable energy
(Bio-)Robotics
Automotive

UNIVERSITY OF TWENTE.
DESIGN CYCLE

Analysis and description of design problem

Definition of the design requirements

Conceptual designs

Prototype

(Detailed) design

Test and evaluation of design
DRONE
BENIFITS OF A DRONE FOR COMMUNITY

- Support for disaster management;
- Rescue of people in mountains;
- Post delivery
-
WHAT ARE MECHANICAL ASPECTS OF A DRONE?

- Propulsion
- Vibrations
- Stability of a camera
- Strength
- Fatigue
- Aerodynamics
- Control
ROLE OF MECHANICAL ENGINEER

Combination of several aspects:
- Design, production but also maintenance
- Life Cycle/Sustainability
- What is possible?
- Is this what people want?
- What does it cost?

Dealing with concessions
DIFFERENCE BETWEEN HBO AND WO

- Mechanical Engineering same discipline, BUT

HBO:
- Practice / Industry
- How?
- Less abstract

WO:
- Scientific / Research
- Why?
- More fundamental (theory)

Higher teaching speed
MECHANICAL ENGINEERING
AT THE UNIVERSITY OF TWENTE
MECHANICAL ENGINEERING MSc PROGRAM

1st year

Profile courses
25 EC

Specialisation courses
15-20 EC

Elective courses (10-15)

In depth (0-10)

2nd year

Internship
20 EC

Thesis
40 EC
MECHANICAL ENGINEERING MSC PROGRAM
COMPETENCE PROFILES & SPECIALISATIONS

- Three competence profiles (Tracks)
 - Research & Development
 - Design & Construction
 - Organization & Management

- Five specialisations
 - Biomechanical Engineering & Biorobotics
 - Design Production & Management
 - Maintenance Engineering & Operations
 - Mechanics of Solids, Surfaces & Systems
 - Thermal & Fluids Engineering

UNIVERSITY OF TWENTE.
MECHANICAL ENGINEERING MSC PROGRAM
COMPETENCE PROFILES

- What kind of work do I like?
 - Researcher
 - Designer
 - Organizer

- What are my strong points?
 - Fundamentals, analyzing, doing experiments, communication, creativity, organization,

- Where would I like to have a job?
You have to specialise in a specific area in the field of ME in order to expand the borders of the subject of your master assignment.

Which field of Mechanical Engineering do I like / am I interested in?

Disciplines like
- Mechanics, Fluid dynamics, Energy Technology, Tribology, Materials, Design, Production, Maintenance, ……

Application areas like
- Acoustics, Robotics, Gas turbines, Rehabilitation, Aerospace, Automotive, Virtual Reality, Composite/light weight structures, ….
<table>
<thead>
<tr>
<th>Competence Profiles & Specialisations</th>
<th>Researcher (R&D)</th>
<th>Designer (D&C)</th>
<th>Organisor (O&M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics of Solids, Surfaces & Systems (MS3)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Applied Mechanics (AM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastomere Technology (ETE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical, Automation and Mechatronics (MA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Technology (PT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Techn. & Tribology (STT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design, Production & Management (DPM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Design Engineering (DE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Management (PM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal and Fluids Engineering (T&FE)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Engineering Fluid Mechanics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi Scale Mechanics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomechanical Engineering (BE) & BioRobotics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Maintenance Engineering & Operations (MEO)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
MECHANICAL ENGINEERING MSC PROGRAM
PROFILE COURSES

Research & Development:

These courses are fundamental courses that provides information on theoretical aspects of the matter necessary to analyze products and processes and they provide tools to develop and optimize them

- Fluid Mechanics
- Transport Phenomena
- Linear Solid Mechanics
- Solids and Surfaces
- System Identification & Parameter Estimation
- Numerical Methods in Mechanical Engineering
MECHANICAL ENGINEERING MSC PROGRAM
PROFILE COURSES

Design & Construction:

These courses focus on design of products and processes at different levels (micro / macro) and in different disciplines

- Design of Biomedical Products
- Product Design
- Process Equipment Design
- Design, Production & Materials
- Design Principles of Precision Mechanisms
- Numerical Methods in Mechanical Engineering
MECHANICAL ENGINEERING MSC PROGRAM
PROFILE COURSES

Organisation & Management:

These courses treat themes in the field of organization and management of processes like, logistics, factory layout, product routing and maintenance of products, machines and constructions

- Maintenance Engineering & Management
- Manufacturing Facility Design
- Design of Production and Inventory Systems
- Engineering Project Management
- Cost Management and Engineering
MECHANICAL ENGINEERING MSC PROGRAM
SPECIALISATIONS
BIOMECHANICAL ENGINEERING & BIOROBOTICS

Focuses on the use of mechanical engineering technology and methodology to address health care problems

Core courses:
- Biomechanics
- Human Movement Control
- Design of Biomedical Products
- Biomechatronics

Working area:
- Design of medical equipment (diagnostic devices)
- Design of appliances for compensation of failing physical functions (prostheses/ortheses)
DESIGN, PRODUCTION AND MANAGEMENT

DESIGN ENGINEERING

Focuses on design technology, production/manufacture or management of production and logistics.

Core courses:
- Design Tools
- Life Cycle Strategy
- Manufacturing Facility Design
- CAD/CAM 3

Working area:
- Improvement of design process
- Software development to encourage creative process
- Use of Virtual Reality

UNIVERSITY OF TWENTE.
Design, Production and Management

Production Management

Looks at time efficiency, the highest quality and the lowest possible cost in addition to a specialist knowledge of technology

Core courses:
- Discrete Optimization of Business processes
- Warehousing
- Simulation
- Stochastic Modelling for Operations Management
- Supply Chain and Transport Management

Working area:
- Logistics within company, Production logistics
- Factory lay-out, Capacity planning
- Stock lay-out & management

University of Twente.
THERMAL AND FLUIDS ENGINEERING

Focuses on the theoretical, numerical and experimental aspects of gasses and fluids and their thermal behavior

Core courses:
- Advanced Engineering Thermodynamics
- Energy Conversion Technology
- Computational Fluid Dynamics
- Multiphase Flows

Assignment specialisations
- Engineering Fluid Mechanics
- Thermal Mechanical Engineering
- Multi Scale Mechanics

UNIVERSITY OF TWENTE.
THERMAL AND FLUIDS ENGINEERING

Focuses on the theoretical, numerical and experimental aspects of gasses and fluids and their thermal behavior

Working area:
- Education (University) and Research
- Research Institutes (NLR, MARIN, TNO)
- Industry (Phillips, Siemens, Wartsila, Exxon, Shell, Boskalis, Nestle, Bayer, Shell, TNO, Alstom, Rolls-Royce, Siemens, Sulzer, etc.)
MAINTENANCE ENGINEERING & OPERATIONS

Design and improvement of maintenance and logistic support for the complete life cycle of technical equipment

Core courses:
- Maintenance Engineering & Management
- Reliability Engineering & Maintenance Management
- Structural Health & Condition Monitoring
- Failure Mechanisms & Life Prediction

Assignment specialisations
- Maintenance Engineering
- Dynamics Based Maintenance
- Tribology Based Maintenance
MAINTENANCE ENGINEERING & OPERATIONS

Design and improvement of maintenance and logistic support for the complete life cycle of technical equipment

Working area:
- Multi disciplinary: technology, organisation and finance
- Requires: analytical competences, technical system knowledge and management skills.
- Industry: Tata steel, Nedtrain, Prorail, Thales, Imtech, KLM, ……

Maintenance Engineer, Asset Engineer, Reliability Engineer and Safety Engineer

UNIVERSITY OF TWENTE.
Mechanics of Solids, Surfaces & Systems MS3

Develops the technology for future manufacturing processes and new products by a science based engineering approach focused on material- and system behavior and robust optimization

Core courses:

- Computational structural optimization
- Dynamics & Control
- Nonlinear Solid Mechanics
- Plastic & Elastomer Engineering
- Experimental Methods

UNIVERSITY OF TWENTE.
Mechanics of Solids, Surfaces & Systems MS³

Develops the technology for future manufacturing processes and new products by a science based engineering approach focused on material- and system behavior and robust optimization

Assignment specialisations:

- Applied Laser Technology
- Design of Mechanisms and Robotics
- Elastomer Technology and Engineering
- Mechanical Automation & Mechatronics
- Nonlinear Mechanics
- Production Technology (Composites & Smart Fibres)
- Skin Tribology
- Structural Dynamics & Acoustics
- Surface Technology and Tribology

UNIVERSITY OF TWENTE.
Mechanics of Solids, Surfaces & Systems MS^3

Develops the technology for future manufacturing processes and new products by a science based engineering approach focused on material- and system behavior and robust optimization

Working area:

- Education (University) and Research
- Research Institutes (NLR, TNO)
- Automotive, Aerospace, Off-shore Industry
- ASML, Philips, Demcon, VDL, Vredestein,

UNIVERSITY OF TWENTE.
BEING
MSC IN MECHANICAL ENGINEERING
TO INDUSTRY OR INSTITUTE OR …?
OR

Broaden your knowledge

- 4 year PhD
- 2 year PDEng
- 2 year MSc
- 3 year BSc
BSc ME is directly admitted (UT, TUD, TU/E)

BSc other technical studies
- Some pre-master courses and/or
- Obligatory BSc courses within the master and/or
- Obligatory MSc courses combined with self study of missing
 BSc knowledge

http://www.utwente.nl/en/education/master/how-to-apply/
ADMISSION
HBO PRE-MASTERS

- Top student at HBO
- Mathematics / Physics / English at VWO level
- Average grade for relevant courses ≥ 7.5

- Finalised HBO-program in related program or during minor at HBO (Academic minor / ‘Doorstroomminor’)
 - 30 ec pre-master courses as pre-master or minor
 - Obligatory BSc courses within the master in stead of internship

- Pre-master is for basic academic knowledge of mechanical engineering and satisfactory for admission for all master specialisations

UNIVERSITY OF TWENTE.
ME PRE-MASTER PROGRAM
FOR HBO
Pre-master program is selection of courses from bachelor program ME (30 + 18 ec)

- A lot of mathematics → special for hbo’ers
- Academic Research Skills → special for hbo’ers
- Extending basic knowledge
 - Thermo dynamics, fluid mechanics, heat exchange, control, dynamics, mechanics→ together with ME-bachelors
- Possibly individual adaptations
OBLIGATORY COURSES PRE-MASTER PROGRAM ME

HBO WB

<table>
<thead>
<tr>
<th>Quart 1</th>
<th>ec</th>
<th>Quart 2</th>
<th>ec</th>
<th>Quart 3</th>
<th>ec</th>
<th>Quart 4</th>
<th>ec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>7</td>
<td>Mathematics</td>
<td>3</td>
<td>Introduction in Finite Element Method</td>
<td>3.5</td>
<td>Dynamics</td>
<td>4.5</td>
</tr>
<tr>
<td>MatLab</td>
<td>1</td>
<td>MatLab</td>
<td>2</td>
<td>Fluid Mechanics 1</td>
<td>3.5</td>
<td>System & Control 1</td>
<td>4</td>
</tr>
<tr>
<td>System Analysis</td>
<td>4</td>
<td>Thermo dynamics</td>
<td>3</td>
<td>Heat Transfer</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid Mechanics</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Research Skills</td>
<td>3</td>
<td>Academic Research Skills</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>totaal</td>
<td>15</td>
<td>totaal</td>
<td>15</td>
<td>totaal</td>
<td>10.5</td>
<td>totaal</td>
<td>7.5</td>
</tr>
</tbody>
</table>

After two Quarts: All courses ≥ 5.5 → Admission for Master UNIVERSITY OF TWENTE.

During master in stead of internship.
ADMISSION FOR OTHER UT BSC PROGRAMS
ADMISSION FOR OTHER UT BSC PROGRAMS
ADVANCED TECHNOLOGY

AT

- Minor **Biorobotics** (Q1, 15 EC)
- Minor **Aircraft Engineering** (Q2, 15 EC)
- Heat Transfer (Q3, 3.5 EC)
- Fluid Mechanics 1 (Q3, 3.5 EC)
- Introduction to Finite Element Method (Q3, 3.5 EC)
- Dynamics 2 (Q4, 4.5 EC)
- Obligatory courses during master
 - Introduction to ME (Q1/Q3, selfstudy, 4 EC)

UNIVERSITY OF TWENTE.
BMT

- Minor **Biorobotics** (Q1, 15 EC)
- Minor **Aircraft Engineering** (Q2, 15 EC)
- Heat Transfer (Q3, 3.5 EC)
- Introduction to Finite Element Method (Q3, 3.5 EC)
- Introduction to ME (Q3, selfstudy, 4 EC)
- Dynamics 2 (Q4, 4.5 EC)
- Obligatory courses during master
 - Fluid Mechanics 2 (if TFE) with Fluid Mechanics 1 self study
ADMISSION FOR OTHER UT BSC PROGRAMS
CIVIL ENGINEERING

CiT

- ME Module 5 **Dynamic Systems** with Programming in Engineering (PIE) in stead of Math D2 (Q1, 15 EC)
- Minor **Aircraft Engineering** with Technical Thermodynamics 1 in stead of Introduction on Aircraft Technology (Q2, 15 EC),
- Obligatory courses during master in stead of internship
 - Numerical Methods in Mechanical Engineering with Introduction to Finite Element Method as self study
 - Heat Transfer (Q3, 3.5 EC)
 - Dynamics 2 (Q4, 4.5 EC)
 - System & Control (Q4, 3.5 EC)
 - Technical Thermodynamics 2 (if TFE, Q3, 1.5 EC)
 - Fluid Mechanics 2 with Fluid Mechanics 1 as self study (if TFE)
ADMISSION FOR OTHER UT BSC PROGRAMS
INDUSTRIAL DESIGN

IO

- ME Module 5 **Dynamic Systems** with Programming in Engineering (PiE) in stead of Dynamics 1 (Q1, 15 EC) and Math D1 selfstudy
- Minor **Aircraft Engineering** with Technical Thermodynamics 1 in stead of Introduction on Aircraft Technology (Q2, 15 EC),
- Obligatory courses during master in stead of internship
 - Fluid Mechanics 1 (Q3, 3.5 EC),
 - Numerical Methods in Mechanical Engineering with Introduction to Finite Element Method as self study.
 - Dynamics 2 (Q4, 4.5 EC)
 - System & Control (Q4, 3.5 EC)
 - Technical Thermodynamics 2 (if TFE, Q3, 1.5 EC)
ADMISSION FOR OTHER UT BSC PROGRAMS
TECHNICAL PHYSICS

TN

- Introduction to ME (selfstudy, 4 EC),
- Minor Biorobotics
- ME Module 6 Product Design
- Obligatory courses during master
 - Numerical Methods in Mechanical Engineering with Introduction to Finite Element Method as self study.
 - Dynamics & Control with Dynamics 2 as self study
ADMISSION FOR OTHER UT BSC PROGRAMS
ELECTRICAL ENGINEERING

EE

- ME Module 1 ME Design & Production with Dynamics 1 in stead of Math A+B1
- Minor Aircraft Engineering with Technical Thermodynamics 1 in stead of Introduction on Aircraft Technology (Q2, 15 EC),
- Obligatory courses during master
 - Numerical Methods in Mechanical Engineering with Introduction to Finite Element Method as self study.
 - Dynamics & Control with Dynamics 2 as self study
 - Fluid Mechanics 2 with Fluid Mechanics 1 as self study
 - Heat Transfer

UNIVERSITY OF TWENTE.
QUESTIONS?

Dr. Genie Stoffels
Bachelorcoordinator-WB@utwente.nl

Prof.dr.ir. André de Boer
a.deboer@utwente.nl

Websites:
www.utwente.nl/en/education/master/programmes/mechanical-engineering/
www.utwente.nl/ME
www.utwente.nl/ME/premaster

Course information

UNIVERSITY OF TWENTE.
QUESTIONS?
SPECIALISATIONS ON THE MARKET

- Mechanics of Solids, Surfaces & Systems (Prof.dr.ir. André de Boer)
- Thermal & Fluids Engineering (Prof.dr.ir. Kees Venner)
- Maintenance Engineering & Operations (Dr.ir. Richard Loendersloot)
- Biomechanical Engineering & Biorobotics (Prof.dr.ir Bart Koopman)
- Design Production & Management (Dr.ir Wessel Wits)